standard deviation of the non-hydrogen atoms from the least-squares plane is $0.014 \AA$. The dimensions of hydroquinone are also similar to those found in several other crystal structures (Mahmoud \& Wallwork, 1975). The significant difference between $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(1)$ and $\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{O}(1)$ is in accord with the observation that, for many phenols, the $\mathrm{C}-\mathrm{C}-\mathrm{OH}$ angle is somewhat larger on the side of the H atom (Mahmoud \& Wallwork, 1975).

References

Altpeter, J. (1931). Das Hexamethylentetramin und seine Verwendung, pp. 80-83. Halle: Wilhelm Knapp.
Becka, L. N. \& Cruickshank, D. W. J. (1963). Proc. Roy. Soc. A273, 435-454.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Cruickshank, D. W. J. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, edited by R. Pepinsky, J. M. Robertson \& J. C. Speakman, p. 45. Oxford: Pergamon Press.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.

Hamilton, W. C., Rollett, J. S. \& Sparks, R. A. (1965). Acta Cryst. 18, 129-130.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Jordan, T. J. \& Mak, T. C. W. (1970). J. Chem. Phys. 52, 3790-3794.
Mahmoud, M. M. \& Wallwork, S. C. (1975). Acta Cryst. B31, 338-342.
МАк, Т. C. W. (1965). J. Chem. Phys. 42, 2732-2737.
Moschatos, H. \& Tollens, B. (1892). Liebigs Ann. 272, 271-288.
Motherwell, W. D. S. (1975). PLUTO, a program for plotting molecular and crystal structures; private communication.
Rollett, J. S. (1965). Computing Methods in Crystallography, edited by J. S. Rollett, p. 31. London: Pergamon Press.
Smith, L. H. \& Welch, K. N. (1934). J. Chem. Soc. pp. 729-730.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Tse, C.-S., Wong, Y.-S. \& Mak, T. C. W. (1977). J. Appl. Cryst. 10, 68-69.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1 144.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1977). B33, 2982-2984

1-Methyl-2-naphthyl Acetate

By D. N. J. White, J. Carnduff, M. H. P. Guy and M. J. Bovill Chemistry Department, The University, Glasgow G12 8QQ, Scotland
(Received 19 May 1977; accepted 4 June 1977)

Abstract

C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}\), monoclinic, $P 2_{1} / c, Z=4, M_{r}=$ $200, a=6.46, b=8.33, c=20.25 \AA, \beta=91.90^{\circ}$, $U=1088 \AA^{3}, D_{m}=1.41, D_{x}=1.22 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda=$ $0.7107 \AA, \mu($ Mo $K \alpha)=0.88 \mathrm{~cm}^{-1}, F(000)=424$, $R=4.6 \%$. The molecular dimensions in the aromatic system are similar to those in naphthalene itself.

Fig. 1. A view of the molecule, showing bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$.

Introduction. Cell dimensions were initially determined from precession photographs and subsequently adjusted to minimize the discrepancies between calculated and observed setting angles measured on a Hilger \& Watts Y290 four-circle computer-controlled diffractometer. The systematic absences, $0 k 0$ when $k=2 n+$ 1 and $h 0 l$ when $l=2 n+1$, determine the space group as $P 2_{1} / c$. The intensities were obtained by the $\omega-2 \theta$ step-scan procedure (40 steps of 0.02°) with back-

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ with e.s.d.'s in parentheses

	\boldsymbol{x}	y	z
C(1)	5324 (3)	779 (2)	1196 (1)
C(2)	4623 (3)	1732 (2)	693 (1)
C(3)	2786 (3)	2624 (2)	705 (1)
C(4)	1639 (3)	2581 (2)	1253 (1)
C(5)	1146 (4)	1637 (3)	2398 (1)
C(6)	1824 (4)	766 (3)	2933 (1)
C(7)	3635 (4)	-127 (3)	2903 (1)
C(8)	4743 (4)	-150 (2)	2346 (1)
C(9)	4134 (3)	752 (2)	1784 (1)
C(10)	2288 (3)	1658 (2)	1810 (1)
C(11)	7228 (4)	-215 (3)	1137 (1)
C(12)	6982 (3)	3031 (2)	6 (1)
C(13)	7935 (6)	2922 (4)	-653 (1)
O (14)	5717 (2)	1770 (2)	102 (1)
O (15)	7262 (2)	4061 (2)	405 (1)
H(3)	2445 (30)	3273 (25)	338 (10)
H(4)	344 (36)	3142 (27)	1287 (10)
H(5)	-98 (37)	2208 (29)	2391 (11)
H(6)	1038 (35)	785 (27)	3324 (12)
H(7)	4176 (37)	-722 (29)	3296 (13)
H(8)	6064 (40)	-748 (31)	2325 (12)
H(111)	8170 (46)	-41(35)	1474 (15)
H(112)	7885 (37)	-55 (28)	720 (13)
H(113)	6816 (48)	-1414 (38)	1180 (14)
H(131)	8219 (47)	1878 (42)	-761 (14)
H(132)	9153 (68)	3526 (50)	-656 (19)
H(133)	6932 (60)	3298 (45)	-976 (19)

ground intensity measurements at each end of the scan range (counting times: scan $1 \mathrm{~s} /$ step; background 20 s) and periodic monitoring of two standard reflexions. 1682 intensities ($2 \theta \leq 52^{\circ}$) with $I \geq 2 \sigma(I)$ were obtained by irradiating a crystal $1 \times 1 \times 1 \mathrm{~mm}$ with Mo $K \alpha$ radiation.

The coordinates of all the nonhydrogen atoms were obtained with MULTAN. Subsequent full-matrix leastsquares calculations with the 1508 reflexions for which $\left|F_{o}\right| \geq 7 \sigma\left(\left|F_{o}\right|\right)$, anisotropic thermal parameters for C and O , and isotropic parameters for the H atoms, located in a difference map towards the end of refinement, converged at $R=4.6 \%$. * A weighting scheme $w=1 /\left(A+B\left|F_{o}\right|+C\left|F_{o}\right|^{2}\right)$ with $A=0.1728$, $B=-0.0277$ and $C=0.0350$ was applied and no correction was made for absorption. Fractional atomic coordinates are given in Table 1. Bond lengths and angles are in Fig. 1.

Discussion. It has been reported that the rate at which 1-alkyl-2-naphthols react with oxygen to give hydroperoxides increases as the expected-steric strain in the alkylnaphthol is increased (Brady \& Carnduff, 1974). Thus, while 1-methyl-2-naphthol and 1-methyl-6-tert-butyl-2-naphthol are essentially inert under the conditions used, 1 -isopropyl- and 1,8-dimethyl-2-naphthol react in a few hours and the 1 -tert-butyl compound in a few minutes. One possible explanation would be that there is some release of peri strain consequent upon the formation of a C(1)-tetrahedral intermediate, which might contribute to a reduction in the activation energy for a rate-limiting step in the free-radical autoxidation. Since the alkylnaphthols are unstable in air, X-ray

[^0]

Fig. 2. The crystal packing.
crystal structure analyses have been performed on the acetates of a number of 1-alkyl-2-naphthols in order to obtain quantitative estimates of the strain present.

As expected, there is no evidence of significant peri strain in 1-methyl-2-naphthol and the molecular geometry is unexceptional.* The only noteworthy difference between the aromatic systems of naphthalene (Pawley \& Yeats, 1969) and 1-methyl-2-naphthol is the $\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$ angle of $120 \cdot 2^{\circ}$ in the former

[^1]and 122.3° in the latter. The opening out of this valency angle is a very effective way of moving $\mathrm{H}(8)$ and the H atoms on $\mathrm{C}(11)$ out of close proximity.

The crystal packing is shown in Fig. 2.

References

Brady, P. A. \& Carnduff, J. (1974). Chem. Commun. pp. 816-817.
Pawley, G. S. \& Yeats, E. A. (1969). Acta Cryst. B25, 2009-2013.

Acta Cryst. (1977). B33, 2984-2985

1-Isopropyl-2-naphthyl Acetate

By D. N. J. White, J. Carnduff, P. R. Mallinson, M. H. P. Guy and M. J. Bovill

Chemistry Department, The University, Glasgow G12 8QQ, Scotland
(Received 19 May 1977; accepted 4 June 1977)

Abstract. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$, orthorhombic, $P b c a, Z=8, M_{r}=$ Abstract. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$, orthorhombic, Pbca, $Z=8, M_{r}=$
$228, a=19.17, b=8 \cdot 59, c=15.46 \AA, U=2546 \AA^{3}$, $D_{m}=1.07, D_{x}=1.19 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda=0.7107 \AA, \mu(\mathrm{Mo}$ $K a)=0.84 \mathrm{~cm}^{-1}, F(000)=976, R=6.1 \%$. An additional increase in the $\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$ angle results from the replacement of a methyl by the ispropyl group.

Introduction. The data collection and structure determination were identical to those for 1 -methyl-2naphthyl acetate, with the following exceptions: the systematic absences are $h 0 l$ when $l=2 n+1, h k 0$ when $h=2 n+1$ and $0 k l$ when $k=2 n+1$; peaks were scanned in 80 steps of 0.01° at $1.5 \mathrm{~s} / \mathrm{step}$ with two 30 s background counts. $2234\left(2 \theta \leq 40^{\circ}\right)$ intensities were measured; the crystal size was $1 \times 1 \times 0.3 \mathrm{~mm}$. Leastsquares refinement was carried out with the 1155 structure amplitudes for which $\left|F_{o}\right| \geq 4 \sigma\left(\left|F_{o}\right|\right)$ and convergence was obtained at $R=\Sigma\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right) / \Sigma\left|F_{o}\right|=6 \cdot 1 \% .^{*}$ The weighting scheme was $w=$ $1 /\left(A+B\left|F_{o}\right|+C \mid F_{o}{ }^{2}\right)$ with $A=0.4999, B-0.3020$ and $C=0.0049$. The fractional atomic coordinates are given in Table 1.

Discussion. Fig. 1 shows that there has been a further

[^2]Table 1. Fractional atomic coordinates ($\times 10^{4}$) with e.s.d.'s in parentheses

	x	y	z
C(1)	1432 (3)	8663 (5)	2290 (3)
C(2)	908 (3)	8983 (6)	1715 (3)
C(3)	469 (3)	10296 (6)	1763 (3)
C(4)	562 (3)	11325 (6)	2412 (4)
C(5)	1163 (3)	12127 (6)	3755 (4)
C(6)	1646 (3)	11869 (7)	4372 (3)
C(7)	2088 (3)	10589 (7)	4314 (4)
C(8)	2029 (3)	9574 (6)	3648 (3)
C(9)	1518 (3)	9745 (6)	2988 (3)
C(10)	1083 (3)	11088 (6)	3049 (3)
C(11)	1879 (2)	7193 (6)	2222 (3)
C(12)	740 (3)	8276 (7)	231 (3)
C(13)	470 (3)	6950 (7)	-301 (3)
C(17)	1455 (4)	5729 (7)	2396 (5)
C(18)	2274 (3)	7090 (7)	1374 (4)
O(14)	744 (2)	7858 (4)	1083 (2)
O (15)	929 (2)	9496 (5)	-26 (3)
H(3)	114 (26)	10370 (61)	1253 (32)
H(4)	266 (24)	12342 (61)	2424 (31)
H(5)	855 (23)	13030 (53)	3719 (30)
H(6)	1686 (24)	12616 (61)	4874 (29)
H(7)	2421 (24)	10459 (51)	4729 (26)
H (8)	2325 (20)	8747 (49)	3601 (25)
H(11)	2265 (27)	7276 (65)	2686 (33)
H(131)	534 (37)	7043 (92)	-963 (48)
H(132)	-24 (31)	6946 (66)	-308 (36)
H(133)	670 (41)	6045 (79)	-150 (48)
H(171)	1750 (26)	4924 (58)	2401 (33)
H(172)	1229 (38)	5782 (88)	2949 (54)
H(173)	1067 (33)	5577 (76)	1932 (42)
H(181)	2663 (26)	6283 (64)	1419 (31)
H(182)	2494 (28)	7935 (62)	1210 (34)
H(183)	1936 (42)	6796 (84)	877 (44)

[^0]: * Lists of structure factors, anisotropic thermal parameters and details of the complete molecular geometry have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32765 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^1]: * See previous footnote.

[^2]: * Lists of structure factors, anisotropic thermal parameters and details of the complete molecular geometry have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32766 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, England.

